National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Methods and technologies for carbon dioxide capture in industrial plants
Rek, David ; Máša, Vítězslav (referee) ; Sukačová, Kateřina (advisor)
The rising level of carbon dioxide in the atmosphere has negative effects on life on our planet. Humanity is now dealing with the issue through multinational organizations which attempt to motivate the current industry to develop innovative solutions to increase the energy-efficiency while lowering the amount of produced emissions. The most affected are energy-intensive sectors of the industry, such as the ceramics industry. This diploma thesis is based on a thorough research conducted on scientific literature, mainly scientific articles. The theoretical part is to familiarize one with the issue of rising levels of carbon dioxide. Next, methods to capture, store and use the gas are presented. Furthermore, the thesis focuses on one such method – microalgal bioreactors. The practical past weighs the usability of microalgal bioreactors for the purpose of carbon dioxide emissions capture in a production company LASSELSBERGER, s.r.o. belonging to the ceramic industry. Tubular bioreactor with a volume of 2000 m3 would process 3,75 % of CO2 produced by the core production machine – spray drier, during this process 367,92 tons of microalgal biomass would be produced annually.
Methods and technologies for carbon dioxide capture in industrial plants
Rek, David ; Máša, Vítězslav (referee) ; Sukačová, Kateřina (advisor)
The rising level of carbon dioxide in the atmosphere has negative effects on life on our planet. Humanity is now dealing with the issue through multinational organizations which attempt to motivate the current industry to develop innovative solutions to increase the energy-efficiency while lowering the amount of produced emissions. The most affected are energy-intensive sectors of the industry, such as the ceramics industry. This diploma thesis is based on a thorough research conducted on scientific literature, mainly scientific articles. The theoretical part is to familiarize one with the issue of rising levels of carbon dioxide. Next, methods to capture, store and use the gas are presented. Furthermore, the thesis focuses on one such method – microalgal bioreactors. The practical past weighs the usability of microalgal bioreactors for the purpose of carbon dioxide emissions capture in a production company LASSELSBERGER, s.r.o. belonging to the ceramic industry. Tubular bioreactor with a volume of 2000 m3 would process 3,75 % of CO2 produced by the core production machine – spray drier, during this process 367,92 tons of microalgal biomass would be produced annually.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.